Single nanorod devices for battery diagnostics: a case study on LiMn2O4.

نویسندگان

  • Yuan Yang
  • Chong Xie
  • Riccardo Ruffo
  • Hailin Peng
  • Do Kyung Kim
  • Yi Cui
چکیده

This paper presents single nanostructure devices as a powerful new diagnostic tool for batteries with LiMn(2)O(4) nanorod materials as an example. LiMn(2)O(4) and Al-doped LiMn(2)O(4) nanorods were synthesized by a two-step method that combines hydrothermal synthesis of beta-MnO(2) nanorods and a solid state reaction to convert them to LiMn(2)O(4) nanorods. lambda-MnO(2) nanorods were also prepared by acid treatment of LiMn(2)O(4) nanorods. The effect of electrolyte etching on these LiMn(2)O(4)-related nanorods is investigated by both SEM and single-nanorod transport measurement, and this is the first time that the transport properties of this material have been studied at the level of an individual single-crystalline particle. Experiments show that Al dopants reduce the dissolution of Mn(3+) ions significantly and make the LiAl(0.1)Mn(1.9)O(4) nanorods much more stable than LiMn(2)O(4) against electrolyte etching, which is reflected by the magnification of both size shrinkage and conductance decrease. These results correlate well with the better cycling performance of Al-doped LiMn(2)O(4) in our Li-ion battery tests: LiAl(0.1)Mn(1.9)O(4) nanorods achieve 96% capacity retention after 100 cycles at 1C rate at room temperature, and 80% at 60 degrees C, whereas LiMn(2)O(4) shows worse retention of 91% at room temperature, and 69% at 60 degrees C. Moreover, temperature-dependent I-V measurements indicate that the sharp electronic resistance increase due to charge ordering transition at 290 K does not appear in our LiMn(2)O(4) nanorod samples, suggesting good battery performance at low temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, characterization and optical band gap of Lithium cathode materials: Li2Ni8O10 and LiMn2O4 nanoparticles

Li2Ni8O10 and LiMn2O4 Nanoparticles as cathode materials of lithium ion battery, were successfully synthesized using lithium acetate, nickel and manganese acetate as Li, Ni and Mn sources and stearic acid as a complexing reagent. The structure of the obtained products were characterized by FT-IR and XRD. The shape, size and distribution of the Li2Ni8O10 and LiMn2O4 nanoparticles were observed b...

متن کامل

Synthesis, characterization and optical band gap of Lithium cathode materials: Li2Ni8O10 and LiMn2O4 nanoparticles

Li2Ni8O10 and LiMn2O4 Nanoparticles as cathode materials of lithium ion battery, were successfully synthesized using lithium acetate, nickel and manganese acetate as Li, Ni and Mn sources and stearic acid as a complexing reagent. The structure of the obtained products were characterized by FT-IR and XRD. The shape, size and distribution of the Li2Ni8O10 and LiMn2O4 nanoparticles were observed b...

متن کامل

Spinel LiMn2O4 nanorods as lithium ion battery cathodes.

Spinel LiMn2O4 is a low-cost, environmentally friendly, and highly abundant material for Li-ion battery cathodes. Here, we report the hydrothermal synthesis of single-crystalline beta-MnO2 nanorods and their chemical conversion into free-standing single-crystalline LiMn2O4 nanorods using a simple solid-state reaction. The LiMn2O4 nanorods have an average diameter of 130 nm and length of 1.2 mic...

متن کامل

Compressional Behavior of Bulk and Nanorod LiMn2O4 under Nonhydrostatic Stress

Compressional Behavior of Bulk and Nanorod LiMn2O4 under Nonhydrostatic Stress Yu Lin,* Yuan Yang, Hongwei Ma, Yi Cui, and Wendy L. Mao Department of Geological and Environmental Sciences and Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States Photon Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United St...

متن کامل

Electrochemical performance of single crystalline spinel LiMn2O4 nanowires in an aqueous LiNO3 solution

Single crystalline cubic spinel LiMn2O4 nanowires were synthesized by hydrothermal method and the precursor calcinations. The phase structures and morphologies were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electronmicroscopy (HRTEM). Galvanostatic charging/discharging cycles of as-prepared LiMn2O4 nanowires w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 9 12  شماره 

صفحات  -

تاریخ انتشار 2009